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.Introduction2

Many of the physical properties Uf Liosslinked elastomers do not depend ,..,

directly upon the local chemical structure of the mdlecule at all. Instead,

they depend upon other quantities, for example, the number V of molecular

strands per unit volume, upon their contour length L and mass Mc and upon

the local rate 0 of Brownian motion of molecular sub-units, consisting of

small portions, about 5 main-chain atoms in length, of a molecular strand.

(The actual number of main-chain atoms per molecular sub-unit is denoted .

below; it is a measure of chain stiffness and hence it is somewhat smaller

for more flexible molecules and larger for stiffer ones.) Some of these

quantities are only indirectly related to the local molecular structure.

As a result, many physical properties are found to be quite similar for

elastomers that have markedly different chemical structure. For example,

the tensile modulus of elasticity E for a network made up of flexible

molecular strands is predicted by the statistical theory of rubber elastic-

ity to be given by (1):

E = 3vkT (1)

where k is Boltzmann's constant, and T is the absolute temperature.

Although the analysis leading to equation 1 takes into account the

limited flexibility of elastomer molecules, this feature of their chemical

structure does not appear in the final result. Thus, whether the individual

molecules are relatively stiff or relatively flexible is unimportant in so

far as the elastic modulus of the network is concerned.

Even the maximum extensibility of the network is only slightly dependent

upon the molecular flexibility, over the range that might be expected for

simple elastomeric polymers. It is principally determined by the molecular .5

length L, and hence molecular weight M between points of molecular inter-
c

linking (crosslinking) (1). It can be-characterized by the ratio X of the . -m
fully-stretched-out molecular length L to the average distance L between

the ends of molecular strands in the unstretched state. The former quantity

is given by

L - nt (2)

where n is the number of molecular sub-units in a molecular strand and Z

is the length of a sub-unit. The latter quantity is given by

Lo  n k3).
if it is assumed that the sub-units are connected together by freely-

rotating joints. Thus,

m un, (4)

where n is related to the number n. of main-chain atoms per molecular

strand by *tl

n n,/q, (5)
no *'5.*. . . . . . . . . . . . .



to the molecular weight M of a network strand by 3 ,..
C 0

*1n - L M Iq.o , (6O) "
., ".- 0

where M°0 is the molecular weight per main-chain atom, and to the number v '.

of network strands per unit volume by

n - A/vqMo, (7)

where A denotes Avogadro's number. Equations 4-7 show that X depends upon
m

2. Tear Strength of Non-Crystallizing Elastomers

When elastomeric networks are torn apart under conditions of minimum

strength, i.e., when no additional energy is expended in various dissipative

processes (for example, viscous motion of molecular strands or detachment

from filler particles), then the work G of fracture per unit area torn
C,o

through is given by (2)

Gvt o  v'noU (8)

where v' is the number of strands crossing a randomly chosen plane of unit

area (the fracture plane, for example) and U is the dissociation energy of

a main-chain bond. The value of V' is directly related to the number V of

strands per unit volume and the average distance L between their ends (2):
"- (3/8)VL (9)

0

Thus, from equations 3, 7, 8 and 9: /
G (3/8) pAUq.Mc"/M °  (10)

=,,C,O 0

In terms of Young's modulus E, from equations 1, 6 and 7:L 12 L 12 1

Cc o - (918) (PA) (qkT) tt o E (11)

Equation 1 indicates, and experiments confirm, that the modulus of

elasticity E depends primarily upon the number of network strands and not

upon their detailed structure. On the other hand, equations 10 and 11 show QUA

that the tear strength depends significantly upon the mass M° per main-chain

atom, as well as upon the number of strands and hence E. Experimental

measurements of tear strength under threshold conditions, i.e., at high

temperatures and low rates of tearing, are in good agreement with these

theoretical predictions, as shown in Figures 1 and 2 (3). Values of the 0

work of fracture Gc are found to increase in proportion to M and to

decrease in proportion to E , for networks prepared by crosslinking to
different degrees. And, for the same values of Mc or of E, substantial ......

differences are found between different polymers, those with larger values
.odesof mass M per main-chain atom having lower tear strengths, as low as

0 - or
1/5 of the tear strength of the simple hydrocarbon elastomers.

-H i=.'._' :, ".:.:_ - '."-'-',- ."I-_' '-,-_.-,,H , l ,-i, " :'..'. : "", ," .- \- -, , ." -""-W '"". . . " " " """"""
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Fig. 1. Threshold tear strength G vs. molecular weight M of network
Co C

strands (3). 1, polybutadiene, M =13.5a.m.u., (A); 2, cis-

polyisoprene, Mo=17a.m.u., (0); 3, trans-polyisoprene, MO 17

a.m.u., ( 4); 4, polydimethyl siloxane, Mo=37a.m.u., ( D ); 5,

phosphonitrilic fluoroelastomer, M0=185a.m.u., (1).
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Fig. 2. Threshold tear strength G c,° vs. Young's modulus E (3). Symbols

as in Figure 1. r



Under normal conditions the tear strength is many times larger than 5

the small threshold value G o, about 50-100 J/m
2, because of energy

expended in various dissipative processes. For simple viscoelastic materials
the tear strength is governed by the local viscosity, i.e., by the rate

of Brownian motion of molecular sub-units. In turn, _ is directly related .

to the temperature difference T-T , where T is the test temperature and

T is the glass transition temperature of the elastomer (4):

log1O(OT/AT)= 17.6(T-T )/(52+T-T ) (12) C,

where denotes the rate of sub-unit motion at T , about 0.1 jumps/sec.

Using a scaling factor aT *T / T for the rate of tearing, measurements

of tear strength for several elastomers at many temperatures can be super-

imposed to give a master curve for tear strength as a function of the
effective rate of tearing at T , Figure 3. This demonstrates that the

tear strength depends only upon T-T, and not upon the local chemical I--

structure of the elastomer except insofar as that determines the value of

T (5).-A

6

Iglo Gc 6A-
5

j (JIm2 )

3

2
-25 -20 -15 -10 -5

logo RoT (m/s)

Fig. 3. Tear strength Gc plotted against the effective rate of tearing

and butadiene-acrylonitrile (NBR) elastomers, with T ranging
; from -30 C to -80 C. i



Far above T , under threshold conditions, the tear strength depends 6

significantly upon the molecular structure as discussed earlier, and there

is some evidence that the same relative differences are maintained under non-

equilibrium conditions. But the primary variable for determining the tear

strength is T-T .
The question now arises; which fracture processes, if any, are strongly

affected by the local chemical structure? Two examples are considered below:

tearing and crack growth, and abrasive wear. Under certain conditions theseIfailure processes are found to depend upon particular features of the elas-
," tomer molecule and they are therefore distinctly different, even for closely-

related chemical structures. Natural rubber can usefully be compared with

cis 1, 4-polybutadiene in this respect, because, although their chemical

structures are superficially similar, large differences are observed in their

resistance to tearing and in the mechanism of wear.

3. Tearing and Crack Growth in Strain-Crystallizing Elastomers

Certain elastomers, notably natural rubber, crystallize on being

- stretched by several hundred per cent. They become much stiffer, and

rather inelastic due to delays in crystallization and in melting on release.

At a crack tip, rubber is highly stressed even when the overall strain is

relatively small. The loss of energy associated with crystallization and,

* later, melting in this region leads to enhanced tear strength at low rates

and high temperatures (6),and a much improved resistance to crack growth

under repeated stressing (7), as shown in Figures 4, 5 and 6, in comparison

with a non-crystallizing elastomer. Strain-induced crystallization is

thus a specific, and highly desirable, feature of elastomers. The physical

and chemical factors responsible for it are discussed below.

5

Logo Gc
h4

(J/m 2I)

-200 4>: .to o ~~40 so-7 """.,,.

I T(oC)

rig. 4. Tear strength Gc of natural rubber as a function of test

temperature T and rate R of tearing (6).
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Fig. 5. Fatigue life N of natural rubber (NR) and a butadiene-styrene

rubber (SBR) plotted against the test temperature T (7).
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Fig. 6. Fatigue life N of natural rubber (NR) and a butadiene-styrene

rubber (SER) plotted against the depth 1 of an initial edge
0

crack (7).



4. Strain-Induced Crystallization 81

The phenomenon of rapid crystallization in the strained state and rapid

melting on release can be attributed to three main causes:

(i) In the unstrained state the crystal melting temperature T lies

below ambient temperature and the material is therefore non-crystalline.

(ii) On stretching, the melting temperature is raised markedly, to

values well above ambient, so that crystallization is thermodynamically

favored and the free energy change on fusion is large.

(iii) The glass transition temperature T is quite low, well below

ambient. Molecular sub-units are consequently highly mobile at ambient

temperature and are able to enter the crystalline state rapidly when the

free energy change is favorable.

Many polymers have low values of T and therefore satisfy condition

(iii). However, many of them have either relatively large latent heats of

fusion h or, more commonly (8), relatively small latent entropies of fusion

s, so that their melting temperatures Tm , given by

T W h(13)
Tm "s

lie above ambient temperature. They are therefore normally crystalline in

the unstrained state. Some common examples are: polyethylene, polyethylene

oxide, trans 1, 4-polybutadiene and trans 1, 4-polyisoprene (see Table 1).

These materials do not satisfy condition (i).

Table 1: Melting temperatures Tm and latent heats

of fusion h for some representative

crystallizing polymers, a

0TM ( C) h(kJ/kg)

Polyethylene 141 280

Polyethylene oxide 66 200

Trans 1, 4-polyisoprene 74 190

Trans 1, 4-polybutadiene 148 187

Cis 1, 4-polybutadiene 6 163

Trans 1, 4-polychloroprene 80 95

Cis 1, 4-polyisoprene 30 65

.°-

a Taken from reference 8 and "Physical Constants of Linear

Homopolymers", by 0. G. Lewis, Springer-Verlag, New York

1968.

_ A 1



Of the remaining elagtomeric materials, some will meet condition (ii)

more successfully than others. The reasons for this can be readily deduced

*from Flory's approximate theoretical treatment for the melting temperature

T mXof crystallites in a molecular network held at a stretch ratio X (9). A. I

* molecular sub-unit entering a crystallite from a strand in a stretched

*molecular network undergoes a smaller loss of configurational entropy than

-~ from the unstretched state because its configurational entropy has already

been lowered somewhat by stretching. The reduction As in the entropy of

fusion can be evaluated from the statistics of deformed and undeformed

molecular networks. The result leads, by means of equation 13 ,to a pre-

dicted increase in the melting temperature on stretching (9):

(hqM 0/R) (T m 
1  T TMX_1  (6/7n) - (X~2 + 2X1l)/2n (14)

where h is the latent heat of fusion per gram, R is the gas constant, and

* X is the tensile stretch ratio applied to the network. This relation is

* found to give reasonably satisfactory predictions of the melting temperatures

T,, at moderate extensions, in the range 100 to 400 per cent (X -2 to 5)

and for different degrees of crosslinking, represented by different values

of the molecular strand length n. Some typical results are shown in Figures

* 7 and 8 (10,11).

Both calculated and observed increases in melting temperature on stretch-

ing are found to be larger for some elastomers than for others, and for

*natural rubber the effect is largest of all. The reason for this lies in

* the unusually small value of the latent heat of fusion h for cis-polyisoprene,

Table 1. As equation 14 indicates, the increase in T on stretching is

-inversely related to h. Thus, the smaller the value of h the greater will

be the tendency to exhibit strain-induced crystallization. An abnormally

-low value of h for natural rubber appears to be associated in part with the

relatively small change in density that accompanies crystallization and in

part with the absence of strong interatomic binding in the unit cell. What-

ever the exact cause, the low value of h is clearly responsible for the

* facility with which natural rubber crystallizes on stretching.

* 5. Abrasive Wear

Wear of rubber under sliding conditions resembles small-scale tearing

(12). Indeed, it has been treated as cumulative tearing - a mechanical

fatigue process - taking place under the repeated action of frictional

forces. A quantitative relationship has been derived in this way for the

* rate of wear in terms of the rate of crack growth under repeated stressing

* (13,14). When the rubber is rather tough and wear resistant, however,

there is evidence of chemical deterioration during sliding, in addition
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Fig. 7. Melting temperatures for crosslinked trans 1, 4-polychloroprel6

held at various stretch ratios X and crystallized at various

temperatures T c (10). Theoretical relation from equation 14

for increase in Tm with A

Tm*X
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* +
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Fig. 8. Melting temperatures for crosslinked trans 1, 4-polvisoprec,

held at various stretch ratios (11). Tbeoretical relation

from equation 14 for increase in T m with >_



to tearing (15,16). When this deterioration is extensive the rubber and 1 "

abrading surface become covered with an oily decomposition product and the

tearing process is altered, if not stopped altogether.

An example of a particle of wear debris torn from a rather weak material,

an unfilled butadiene-styrene (SBR) vulcanizate, is shown in Figure 9. It

has characteristically rough, torn surfaces. In contrast, the particle r,

shown in Figure 10, obtained from a carbon-black-filled SBR vulcanizate,

has a smooth, shiny appearance and the surface is sticky, as if covered

with an oily or tarry film. The debris from carbon-black-filled natural

rubber vulcanizates is even more highly degraded, so that the individual

particles can hardly be distinguished in this case. On the other hand, the

debris from carbon-black-filled cis 1, 4-polybutadiene materials is finely-

divided and particulate showing no signs of decomposition and every indi-

cation of having been mechanically torn away from the rubber surface. Thus,

the wear process for reinforced elastomeric materials of roughly equal

hardness and friction coefficient, and of comparable tear strength and

tensile strength, differs strikingly in character from one polymer to

another. These differences must be ascribed to different chemical features

of the elastomers.

It should be pointed out at this stage that the formation of an oily

degraded surface layer is not necessarily a beneficial feature. If the

layer is readily removed from the rubber, then further deterioration can

proceed rapidly. Indeed, if in the early stages of decomposition, the

rubber is rendered softer and weaker, it will be torn away more easily and

the rate of wear will be correspondingly greater than in the absence of

general molecular scission. On the other hand, if the liquidlike film is

viscous, tarry, and adhesive, it appears to be retained on the rubber

surface to act as a protective layer. The rate of wear is then much reduced.

-75
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Fig. 9. Photograph of wear debris from an unfilled SBR vulcanizate.
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Fig. 10. Photograph of wear debris from a carbon-black-filled SBR

vul cani zate.



In order to account for the formation of a degraded surface film in 14

some instances, a number of possible chemical processes can be hypothesized:

.4.(i) Thermal decomposition, as a result of frictional heating. I
(ii) Oxidative scission of the molecular network, possibly

accelerated by frictional heating.

(iii) Mechanical rupture of the molecular network, followed by in-

ternal and external reactions of the polymer radicals generated in this way.

The first process need not be considered further here, because all

of these elastomers are more or less equally susceptible to thermal decom-

position whereas they do not all degrade during sliding. The second process

is also probably not the main mechanism of decomposition because some

elastomers show frictional decomposition even in inert atmospheres (15).

The third process, however, does appear to be the basic mechanism of

molecular decomposition during sliding. A rather good correlation is found

to hold between the degree of decomposition observed during frictional

sliding, both in air and in an inert atmosphere, and corresponding changes

in molecular weight when the original elastomer (before crosslinking) is

subjected to continuous mechanical shearing (15,16). For example, poly-

butadiene forms rather reactive macroradicals by molecular scission, and

then undergoes crosslinking reactions, so that both in the shearing of the

uncrosslinked polymer and the frictional sliding of the reinforced and

crosslinked polymer, the product of mechanochemical processes tends to

become a crosslinked solid. In contrast, natural rubber forms a resonance- -4

stabilized macroradical by molecular fracture, which, in the presence of

oxygen, forms a peroxy radical and then a hydroperoxide by H abstraction

so that the original chain fracture is rendered permanent. Indeed, sub-

sequent oxidation steps may cause scission of other chains as well. Thus, .'.

the product of mechanical rupture of the molecular network in this case

tends to become liquidlike rather than solid.

These considerations account for the formation of a viscous liquid

film on certain materials, and not on others, during frictional sliding.

Moreover, the properties of the film, its viscosity and adhesiveness, will

clearly depend upon the detailed reactions initiated by mechanical rupture

of the elastomer molecules. They will therefore differ from one elastomer

to another and they will also depend upon the particular ingredients used

in the rubber mix formulation, especially when these substances are them-

selves able to participate in free-radical reactions.

Many of the differences encountered in the wear behavior of practical

rubber compounds can thus be accounted for in a qualitative way when the

specific chemical process involved in wear is recognized.

1.
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